
TECHNICAL NOTE 

Correlat ions for free convect ion and 
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In the present study the results of a numerical investigation of combined surface radiation 
and free convection in a square cavity with air as the intervening medium are reported. 
The computations have been performed for 10 3 < Gr _< 10 6, with the emissivities of all the 
walls varying between 0 and 1. Surface radiation reduces the convective heat transfer 
across the cavity and at the same time contributes to the overall heat transfer by direct 
radiant heat transfer across the cavity. This "dua l "  nature of radiation has been 
qualitatively highlighted in an earlier investigation by the authors. The objective of the 
present study however, is to give comprehensive correlations for convection and radiation 
based on the numerical calculations of the coupled problem. The basis for the choice of 
the form of the various terms in the correlations has also been brought out. 

K e y w o r d s :  radiation convection interaction; radiation Nusselt number; convection 
Nusselt number; correlation 

Mathematical formulation 
and solution procedure 

The governing equations for two-dimensional (2-D), laminar, 
constant property fluid with Boussinesq approximation for 
free convection in a square cavity are the well-known 
Navier-Stokes equations. In the present study, the vorticity- 
stream-function form of the above equations is used. The 
governing equations, along with the boundary conditions for 
a cavity with sidewall heating and adiabatic top and bottom 
walls, are given in a number of references (see, for example, 
Balaji and Venkateshan 1993). The advantage of the vorticity 
formulation is the reduction of two momentum equations into 
one vorticity transport equation along with the elimination of 
the pressure terms. The boundary conditions for the stream 
function and vorticity on the four solid walls are well 
established (Gosman et al. 1969). 

However, for the sake of completeness, the boundary 
conditions on temperature will be elaborated, since the 
coupling between radiation and free convection arises only in 
the temperature on the walls. The details of the problem 
geometry are given in Figure 1. The left wall is an isothermal 
heat source at temperature TH, and the right wall is an 
isothermal heat sink at T c. The top and bottom walls "float" 
at a temperature governed by a balance between convection 
and radiation. Stated more explicitly, the sum of the convective 
and radiative fluxes on each of these two walls is zero. 
Mathematically the coupling between free convection and 
radiation on these two walls can be represented as 

- k  8T/c3x + (J - I) = 0 (1) 
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J and I represent the elemental radiosities and irradiations. If 
subscript i denotes the element under consideration, then 

Ji = eitrT~ + (1 - ei)I i (2) 
N 

I i = ~ FqJ~ (3) 
j=l 

where N is the number of surface elements (depending on the 
grid size). 

In nondimensional form, Equation 1 becomes 

~dp/~3X = NRC(] -- i) (4) 

With reference to the solution procedure for convection, a 
standard finite-volume method based on Gosman et al. (1969) 
was used. A 21 x 21 nonuniform grid with grid clustering near 
the walls was used for the convection solver. To ensure grid 
compatibility, the same grids were retained for radiation 
calculations. The standard enclosure method was used for the 
radiation equations. In the  present case, there are 20 zones on 
each wall, and the whole enclosure has 80 zones. The view 
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factors are evaluated by Hottel's cross-string method (Hottel 
and Saroffim 1967). The required radiosities are obtained by 
the Gauss-Seidel method. 

For every iteration of the convection solver, the radiosities 
and irradiations were evaluated, and Equation 4 was used to 
obtain new temperatures on the top and bottom walls. The 
above procedure was repeated until temperatures converged to 
0.05%. 

Results and discussion 

Calculations were made for a wide range of parameters, shown 
in Table 1. Grid-sensitivity analysis was done for both 
convection and radiation. For a typical case when the e of all 
the walls was 1, Gr = 5 x l0 s and T a = 0.73 the difference in 
N----u c between a 21 x 21 grid and a 31 × 31 grid was 2%, and 
that for N----~ R was 0.05%. Hence, in the present study, 
calculations were done with a 21 x 21 grid. 

C o n v e c t i o n  

Based on a large number  o f  numer ica l  data (55 points), N u  c 
correlates as 

N--'u c = 0.149 Gr °'294 (1 + ell) -0 ' 279  (1 + ec) °'182 (1 + ea) -°'x35 

(1 + eT) °'115 (NRc/(NRc + 1)) 0.272 (5) 

The above correlation has a correlation coefficient of 0.998; the 
maximum error between data and correlation was 4.9%. The 
correlation was chosen in its present form after a careful 
consideration of the effect of each of the parameters on Nuc. 
When surface radiation is considered, Nu c becomes a function 
of radiative parameters apart from Gr. Mathematically, 

N---u c = aGrbf(eH, ec, ea, eT, TR, NRC ) (6) 

In the present study, a power law form is used to quantify the 

Table 1 Range of parameters in the present study 

103 < Gr _< 10 B 
0_<ell_<1 
0_<~C_<1 
0 < _ e a < l  
0 < e m _ < l  

0.73 < TR --< 0.95 
4 < NRC --< 22 

Note: Actual values of e used in the calculations for all the walls: 
(0, 0.3, 0.5, 0.7, 1 ). 

effect of the above parameters on Nu c. Even when the 
emissivity of all the walls is zero, Nu c will be nonzero and hence 
the (1 + e) form is used in the correlation for the emissivities 
of the four walls. With reference to Ntc, a closer look is indeed 
revealing. NRC by definition is aT4Hd/k(Tn - Tc). In the present 
study, the fluid considered was air (Pr = 0.71), and so the 
thermal conductivity (k) is fixed. Hence the only way NRc can 
change is either by changing the spacing (d) or the temperature 
level. But when this happens, Gr also changes. Therefore, the 
important point emerges that NRc actually usurps the role of 
Gr when a correlation is attempted for convection. Also, the 
effect of surface radiation is to reduce the convective heat 
transfer only to the extent of 12%-15% in a square cavity 
(Balaji and Venkateshan 1993). Hence if a power law form is 
used for NRc, it will underplay the importance of Gr in 
determining Nuc. Also, from Table 1, it is clear that Nac is 
always greater than unity. In consideration of these reasons, 
the form (NRc/(NRc + 1)) was chosen. Actually, the correlation 
coefficient substantially improved when this form was used. 
Simultaneously, the standard deviation was also substantially 
reduced. The Gr exponent appearing in the correlation 
(Equation 5) is 0.294, which is close to the usually quoted value 
for the cavity problem (Ostrach 1972). With reference to Tg, it 
can be seen that Nsc includes Tg indirectly, since it contains 
the term (T H - Tc). Hence T, is not independently used in the 

Nota t ion  
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Nuc 

N u  R 

Nug 

Constant in the correlation for Nussett number 
Exponent of Grashof number in the correlation 
Spacing, m 
Function relating radiative parameters with free 
convection 
View factor from the ith element to the jth element 
Acceleration due to gravity, m/s 2 
Grashof number based on d, g fl (T n - Tc) d3/v 2 
Height of the enclosure, m 
Nondimensional irradiation, I/trT~ 
Elemental irradiation, W/m 2 
Nondimensional radiosity, J /aT~  
Elemental radiosity, W/m 2 
Thermal conductivity of fluid, W/m K 
Number of surface elements used in radiation 
calculations 
Radiation conduction interaction parameter, 
a T~d/k(T.  - Tc) 
Local convection Nusselt number based on d, 
-(~4,)/eY)~ = o 
Average or mean convection Nusselt number, 
So ~ N~:/2 dX 
Local radiation Nusselt number based on d, 
qg d/k(Tn -- Tc) 
Average or mean radiation Nusselt number, 
S 2 NUR/2 dX 

P r  

qg 
T 
Tc 
T. 
Tg 
X 
X 
Y 
Y 

Prandtl number, v/ot 
Elemental radiative heat flux, (J - I), W/m 2 
Temperature at any location (X, Y), K 
Temperature of right wall, K 
Temperature of left wall, K 
Temperature ratio, Tc/T H 
Vertical distance, m 
Nondimensional vertical distance, 2x/d 
Horizontal distance, m 
Nondimensional horizontal distance, 2y/d 

Greek  symbols  

Thermal diffusivity, m2/s 
fl Thermal expansion coefficient, 1/K 

Emissivity 
v Kinematic viscosity, mZ/s 
~b Nondimensional temperature, (T  - Tc)/(Ta - Tc) 

Subscr ip ts  

H Hot wall 
C Cold wall 
T Top wall 
B Bottom wall 
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correlation. All the above considerations were motivating 
factors in choosing the correlation in the present form. If one 
takes a closer look at the correlation, all the (1 + ~) terms as 
well as the (NRc/(NRc+ 1)) are of the order of unity, whereas 
the Grashof number is at least three orders of magnitude more 
than the aforesaid terms. This fact, combined with an exponent 
of 0.294 for Gr, brings out the strong dependence of Nuc on 
Gr and the relatively weak dependence of Nuc on radiative 
parameters. Also, it can be seen that of all the walls, the left 
wall has the strongest effect on convection. This is intuitively 
apparent, since the left wall is the only heat source for both 
convection and radiation. The excellent agreement between the 
data and correlation can be seen in Figure 2. 

Radia t ion  

The radiation Nusselt number (NuR) can be correlated as 

NuR = 0.657 GL--°'°°93 t; H.̂ 0 808^0~C.342 ~It" "JV SB) 0 '199 (1 + ET) - 0"039 

(1 -- TR4) 1''49 N~b TM (7) 

The above correlation has a correlation coefficient of 0.998, 
and the maximum error between data and correlation was 
6.0%. The parameters governing the problem are now clear 
from the convection results. However, certain finer points are 
worth mentioning. With reference to Nu R, it is quite clear that 
when SH = 0 and when e c = 0, then Nu R is 0. Hence a power 
law form is used for ~a and Sc. However, when the emissivity 
of the top and bottom walls is zero, Nu R can be nonzero. From 
a physical standpoint, this is basically because the left wall is 
the only source of radiation in the present problem and the 
right wall is the only heat sink, since the other two walls are 
truly adiabatic. Hence the (1 + s) form is used for the top and 
bottom walls. T, is a crucial parameter for radiation, unlike 
convection, basically because radiative flux is proportional to 
(W~ - W~). This expression is actually r~(1 - r,a). Hence, the 
(1 - T~) form is used in correlating Nu,.  Since T~ appears in 
NRc, it is also a crucial parameter in determining the radiant 
Nusselt number. And finally, the link between free convection 
and radiation appears in the power law form for Gr. The 
excellent agreement between the data and correlation is seen 
in Figure 3. 
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Figure 2 Comparison of N'u c (data) with N'u c (correlated) 
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Figure 3 Comparison of NUR (data) with NUR (correlated) 

The arguments presented above clearly highlight the 
importance of choosing the form of the correlation that must 
be consistent with the physical understanding of the 
phenomenon under question. In fact, the correlation for 
convection includes the radiative parameters and vice versa, 
and this is a direct consequence of the coupling in the problem 
under consideration. 

Finally, it is of interest to note that since both N-~c and N--uR 
are based on the spacing d, the overall Nusselt number, which 
is the sum of the two, will actually give the effective thermal 
conductivity of the system. Typically, if N---u c = 4 and N-uR = 2, 
then the overall Nusselt number is 6, and if k = 0.027 W/m K, 
then the effective k for the system is 6 x 0.027 = 0.162 W/m K. 
From a physical standpoint, this means that the effect of 
convection and radiation is equivalent to pure conductive heat 
transfer across the air layer with a thermal conductivity equal 
to the effective thermal conductivity. 

C o n c l u s i o n s  

In the present study, the coupled problem of surface radiation 
with free convection in a square cavity with air as the medium 
was numerically solved. Correlations have been developed for 
both convective as well as radiative heat transfer. The study 
has brought out the importance of the form of the correlation, 
which should be consistent with the physics associated with the 
problem. 
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